Peer-Reviewed Publications

82. ‘Do carbon nanomaterial solid contacts experience double layer capacitive charging or ionic transference in all-solid-state polymeric sensors?’.

M. Cuartero, et al., Elettra Synchrotron Highlights, 2018, 16-17.

Figure 1 

 

81. ‘In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors‘.

M. Cuartero, et al., Anal. Chem., 2018, Under Revision, Coming soon.     

80. Agarose hydrogel containing immobilized pH buffer microemulsion without increasing permselectivity’. 

M. Coll Crespi, et al., Talanta 2018, 177, 191-196.https://doi.org/10.1016/j.talanta.2017.08.053

Corel main figures paper VII.cdr

 

79. ‘Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids’.

N. Pankratova, et al., Biosens. Bioelectron., 2018, 99, 70-76.https://doi.org/10.1016/j.bios.2017.07.001

Main_Figures

 

78. ‘Voltammetric Thin Layer Ionophore Based Films: Part 2. Semi-Empirical Treatment’.

D. Yuan, et al., Anal. Chem.2017, 89, 595–602.https://doi.org/10.1021/acs.analchem.6b03355

ac-2016-03355h_0009

 

77. ‘Voltammetric Thin Layer Ionophore Based Films: Part 1.  Experimental Evidence and Numerical Simulations Semi-Empirical Treatment’.

D. Yuan, et al., Anal. Chem.2017, 89, 586–594.https://doi.org/10.1021/acs.analchem.6b03354

ac-2016-033542_0006

 

76. ‘In-line Acidification for Potentiometric Sensing of Nitrite in Natural Waters’.

N. Pankratova, et al., Anal. Chem.2017, 89, 571–575.https://doi.org/10.1021/acs.analchem.6b03946

ac-2016-039464_0005

 

75. ‘PEDOT (PSS) as solid contact for ion-selective electrodes: the influence of the PEDOT (PSS) film thickness on the equilibration times’.

M. Guzinski, et al., Anal. Chem.2017, 89, 3508-3516.https://doi.org/10.1021/acs.analchem.6b04625

 ac-2016-04625d_0005.gif

 

74. ‘In Situ Detection of Species Relevant to the Carbon Cycle in Seawater with Submersible Potentiometric Probes’.

M. Cuartero, et al., Environ. Sci. Technol. Lett., 20174, 410-415.https://doi.org/10.1021/acs.estlett.7b00388

ez-2017-003888_0004.gif 

73. ‘Electron Hopping Between Fe 3 d States in Ethynylferrocene‐doped Poly (Methyl Methacrylate)‐poly (Decyl Methacrylate) Copolymer Membranes’.

M. Cuartero, et al., Electroanalysis, 2017, No assigned.https://doi.org/10.1002/elan.201700510

elan201700510-fig-5001

 

72. ‘Electrochemical Mechanism of Ferrocene-Based Redox Molecules in Thin Film Membrane Electrodes’.

M. Cuartero, et al., Electrochim. Acta., 2017238, 357-367.https://doi.org/10.1016/j.electacta.2017.04.047

Microsoft Word - ECA_Manuscript_Revised_8-4-17_Final.docx

 

71. ‘Robust Solid-Contact Ion Selective Electrodes for High-Resolution In-Situ Measurements in Fresh Water Systems’.

R. Athavale, et al., Environ. Sci. Technol. Lett., 20174, 410-415.https://doi.org/10.1021/acs.estlett.7b00130

ez-2017-001302_0003

 

70. ‘Alkalinization of Thin Layer Samples with a Selective Proton Sink Membrane Electrode for Detecting Carbonate by Carbonate-Selective Electrodes’.

S. Jansod, et al., Anal Chem., 2016, 88, 3444-3448.https://doi.org/10.1021/acs.analchem.6b00346

ac-2016-003462_0006

 

69. ‘Phenytoin speciation with potentiometric and chronopotentiometric ion-selective membrane electrodes’.

S. Jansod, et al., Biosens. Bioelectron., 2016, 79, 114-120.https://doi.org/10.1016/j.bios.2015.12.011

untitled

 

68. ‘Flow Chronopotentiometry with Ion-Selective Membranes for Cation, Anion, and Polyion Detection’.

M. Afshar, et al., Anal. Chem., 201688, 3945-3952.https://doi.org/10.1021/acs.analchem.6b00141

ac-2016-001418_0010

67. ‘Polyurethane ionophore-based thin layer membranes for voltammetric ion activity sensing’.

M. Cuartero, et al., Anal. Chem., 201688, 5649-5654.https://doi.org/10.1021/acs.analchem.6b01085 

ac-2016-010852_0006

66. ‘Ionophore-based voltammetric ion activity sensing with thin layer membranes’.

M. Cuartero, et al., Anal. Chem., 201688, 1654-1660.https://doi.org/10.1021/acs.analchem.5b03611

ac-2015-03611r_0009

65. ‘Evidence of double layer/capacitive charging in carbon nanomaterial-based solid contact polymeric ion-selective electrodes’.

M. Cuartero, et al., Chem. Comm., 201652, 9703-9706.https://doi.org/10.1039/c6cc04876e

c6cc04876e-s2_hi-res

 

64. ‘Electrochemical ion transfer with thin films of poly (3-octylthiophene)’.

M. Cuartero, et al., Anal. Chem., 201688, 6939-6946.https://doi.org/10.1021/acs.analchem.6b01800 

ac-2016-01800d_0007

 

63. ‘All-solid-state potentiometric sensors with a multiwalled carbon nanotube inner transducing layer for anion detection in environmental samples’.

D. Yuan, et al., Anal. Chem., 201587, 8640-8645.https://doi.org/10.1021/acs.analchem.5b01941

ac-2015-01941s_0007

62. ‘Local Acidification of Membrane Surfaces for Potentiometric Sensing of Anions in Environmental Samples’.

N. Pankratova, et al., ACS. Sensors, 20151, 48-54.https://doi.org/10.1021/acssensors.5b00015

se-2015-000154_0006

 

61. ‘Potentiometric sensing array for monitoring aquatic systems’.

N. Pankratova, et al., Environ. Sci. Process. Impact., 201517, 906-914.https://doi.org/10.1039/c5em00038f

c5em00038f-f3_hi-res

 

60. ‘GalvaPot, a custom-made combination galvanostat/potentiostat and high impedance potentiometer for decentralized measurements of ionophore-based electrodes’.

S. Jeanneret, et al., Sens. Actuators B Chem., 2015207, 631-639.https://doi.org/10.1016/j.snb.2014.10.084

1-s2.0-S0925400514012969-gr1

 

59. ‘Coulometric calcium pump for thin layer sample titrations’.

M. Afshar, et al., Anal. Chem., 201587, 10125-10130.https://doi.org/10.1021/acs.analchem.5b02856

ac-2015-02856x_0010

 

 

58. ‘Tandem electrochemical desalination–potentiometric nitrate sensing for seawater analysis’.

M. Cuartero, et al., Anal. Chem., 201587, 8084-8089.https://doi.org/10.1021/acs.analchem.5b01973

ac-2015-019734_0006

57. ‘Paper-based thin-layer coulometric sensor for halide determination’.

M. Cuartero, et al., Anal. Chem., 201587, 1981-1990.https://doi.org/10.1021/ac504400w

ac-2014-04400w_0009-2

 

56. ‘Thin layer samples controlled by dynamic electrochemistry’.

M. Cuartero, et al., CHIMIA International Journal for Chemistry, 2015, 69, 203-206.https://doi.org/10.2533/chimia.2015.203

55. ‘Thin layer ionophore-based membrane for multianalyte ion activity detection’.

G.A. Crespo, et al., Anal. Chem., 201587, 7729-7737.https://doi.org/10.1021/acs.analchem.5b01459

ac-2015-01459b_0005.gif

54. ‘Characterization of Salophen Co (III) Acetate Ionophore for Nitrite Recognition’.

G.A. Crespo, et al., Electrochim. Acta, 2015179, 16-23.https://doi.org/10.1016/j.electacta.2015.03.180

Fig-NO2-V15

 

53. ‘In Situ Ammonium Profiling Using Solid-Contact Ion-Selective Electrodes in Eutrophic Lakes’.

R. Athavale, et al., Anal. Chem., 201587, 11990-11997.https://doi.org/10.1021/acs.analchem.5b02424

ac-2015-02424z_0007.gif

52. ‘Thin Layer Coulometry of Nitrite with Ion‐Selective Membranes’.

M. Afshar, et al., Electroanalysis, 201527, 609-615.https://doi.org/10.1002/elan.201400522

nfig001.gif

51. ‘Thin‐Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection’.

M. Afshar, et al., Angew. Chem. Int. Ed., 2015127, 8228-8231.https://doi.org/10.1002/ange.201500797

nsch001

50. ‘Ionophore-based ion-selective optical nanosensors operating in exhaustive sensing mode’.

X. Xie, et al., Anal. Chem., 201486, 8770-8775.https://doi.org/10.1021/ac5019606

ac-2014-019606_0007

49. ‘Potassium-selective optical microsensors based on surface modified polystyrene microspheres’.

X. Xie, et al., Chem. Comm., 201450, 4592-4595.https://doi.org/10.1039/C4CC01313A

c4cc01313a-f1_hi-res

48. ‘Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane’.

X. Xie, et al., Nature Chemistry, 20146, 202-20.https://doi.org/10.1038/nchem.1858

nchem.1858-f1.jpg

47. ‘Nitrite‐Selective Electrode Based On Cobalt (II) tert‐Butyl‐Salophen Ionophore’.

B. Neel, et al., Electroanalysis, 201426, 473-480.https://doi.org/10.1002/elan.201300607

nfig002

46. ‘Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations’.

B. Neel, et al., J. Chem. Education, 201491, 1655-1660.https://doi.org/10.1021/ed4008149ed-2013-008149_0009

45. ‘Chronopotentiometric carbonate detection with all-solid-state ionophore-based electrodes’.

Z. Jarolimova, et al., Anal. Chem., 201486, 6307-6314.ttps://doi.org/10.1021/ac5004163

ac-2014-004163_0008

44. ‘A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements’.

T. Guinovart, et al., Anal. Chim. Acta, 2014821, 72-80.https://doi.org/10.1016/j.aca.2014.02.028

1-s2.0-S0003267014002268-fx1

43. ‘A low-cost thin layer coulometric microfluidic device based on an ion-selective membrane for calcium determination’.

D. Dorokhin, et al., Analyst, 2014139, 48-51.https://doi.org/10.1039/C3AN01715J

c3an01715j-f1_hi-res

42. ‘Exhaustive thin-layer cyclic voltammetry for absolute multianalyte halide detection’.

M. Cuartero, et al., Anal. Chem., 201486, 11387-11395.https://doi.org/10.1021/ac503344f

41. ‘Chronopotentiometry of pure electrolytes with anion-exchange donnan exclusion membranes’.

G.A. Crespo, et al., Anal. Chem., 2014, 86, 1357-1360.https://doi.org/10.1021/ac403902f

 

ac-2013-03902f_0006

40. ‘Chronopotentiometry of pure electrolytes with anion-exchange donnan exclusion membranes’.

G.A. Crespo, et al., J. Electroanal. Chem., 2014, 731, 100-106.https://doi.org/10.1016/j.jelechem.2014.08.007

1-s2.0-S1572665714003397-fx1

 

39. ‘Environmental sensing of aquatic systems at the University of Geneva’.

E. Bakker, et al., CHIMIA International Journal for Chemistry, 2014, 68, 772-777.https://doi.org/10.2533/chimia.2014.772

38. ‘Direct alkalinity detection with ion-selective chronopotentiometry’.

M. Afshar, et al., Anal. Chem., 201486, 6461-6470.https://doi.org/10.1021/ac500968c

ac-2014-00968c_0011

 

37. ‘Counter electrode based on an ion-exchanger Donnan exclusion membrane for bioelectroanalysis’.

M. Afshar, et al., Biosens. Bioelectron., 201461, 64-69.https://doi.org/10.1016/j.bios.2014.04.039

Last version GC

 

36. ‘Oxazinoindolines as fluorescent H+ turn-on chromoionophores for optical and electrochemical ion sensors’.

X. Xie, et al., Anal. Chem., 201385, 7434-7440.https://doi.org/10.1021/ac401367b

ac-2013-01367b_0007

35. ‘High‐Selective Tramadol Sensor Based on Modified Molecularly Imprinted Polymer Carbon Paste Electrode with Multiwalled Carbon Nanotubes’.

M. Soleimani, et al., Electroanalysis, 2013, 25, 1159-1168.https://doi.org/10.1002/elan.201200601

nfig004

34. ‘PVC‐Based Ion‐Selective Electrodes with Enhanced Biocompatibility by Surface Modification with “Click” Chemistry’.

M. Pawlak, et al., Electroanalysis, 201325, 1840-1846.https://doi.org/10.1002/elan.201300212

nfig005

33. ‘Photoresponsive ion extraction/release systems: dynamic ion optodes for calcium and sodium based on photochromic spiropyrans’.

G. Mistlberger, et al., Anal. Chem, 201385, 2983-2990.https://doi.org/10.1021/ac4000283

ac-2013-000283_0012.gif

32. ‘All solid state chronopotentiometric ion-selective electrodes based on ferrocene functionalized PVC’.

Z. Jarolimova, et al., J. Electroanal. Chem., 2013709, 118-125.https://doi.org/10.1016/j.jelechem.2013.10.011

Microsoft Word - Graphical Abstract

31. ‘Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes’.

T. Guinovart, et al., Analyst, 2013138, 5208-5215.https://doi.org/10.1039/C3AN00710C

c3an00710c-f1.gif

30. ‘Potentiometric sensors with ion-exchange donnan exclusion membranes’.

E. Grygolowicz-Pawlak, et al., Anal. Chem., 201385, 6208-6212.https://doi.org/10.1021/ac400470n

ac-2013-00470n_0004.gif

29. ‘Detecting heparin in whole blood for point of care anticoagulation control during surgery’.

E. Bakker, et al., CHIMIA International Journal for Chemistry, 2013, 67, 350-350.https://doi.org/10.2533/chimia.2013.350

28. ‘The oxidation state of copper in bimetallic (Pt–Cu, Pd–Cu) catalysts during water denitration’.

J. Sa, et al., Catal. Sci. Technol., 2012, 2, 794-799.https://doi.org/10.1039/C2CY00461E

c2cy00461e-f1

27. ‘Paper based ion-selective potentiometric sensors’.

M. Novell, et al., Anal. Chem., 201284, 4695-4702.https://doi.org/10.1021/ac202979j

ac-2011-02979j_0005

26. ‘Photodynamic ion sensor systems with spiropyran: photoactivated acidity changes in plasticized poly (vinyl chloride)’.

G. Mistlberger, et al., Chem. Comm., 201248, 5662-5664.https://doi.org/10.1039/C2CC30657C

c2cc30657c-s1

25. ‘Nanostructured assemblies for ion-sensors: functionalization of multi-wall carbon nanotubes with benzo-18-crown-6 for Pb 2+ determination’.

G. Kerric, et al., J. Mater. Chem., 201222, 16611-16617.https://doi.org/10.1039/C2JM33153E

c2jm33153e-f1

24. ‘Direct ion speciation analysis with ion-selective membranes operated in a sequential potentiometric/time resolved chronopotentiometric sensing mode’.

M. Afshar, et al., Anal. Chem., 201284, 8813-8821.https://doi.org/10.1021/ac302092m

ac-2012-02092m_0002

23. ‘Direct detection of acidity, alkalinity, and pH with membrane electrodes’.

G.A. Crespo, et al., Anal. Chem., 201284, 10165-10169.https://doi.org/10.1021/ac302868u

ac-2012-02868u_0005.gif

22. ‘Towards Ion‐Selective Membranes with Electrogenerated Chemiluminescence Detection: Visualizing Selective Ru (bpy) 32+ Transport Across a Plasticized Poly (vinyl chloride) Membrane’.

G.A. Crespo, et al., Electroanalysis, 201224, 61-68.https://doi.org/10.1002/elan.201100434

nfig001-2

21. ‘Ionophore-based ion optodes without a reference ion: electrogenerated chemiluminescence for potentiometric sensors’.

G.A. Crespo, et al., Analyst, 2012137, 4988-4994.https://doi.org/10.1039/C2AN35516G

c2an35516g-f1

 

20. ‘Reversible sensing of the anticoagulant heparin with protamine permselective membranes’.

G.A. Crespo, et al., Angew. Chem. Int. Ed., 201251, 12575-12578.https://doi.org/10.1002/anie.201207444

mcontent

19. ‘Potentiometric strip cell based on carbon nanotubes as transducer layer: toward low-cost decentralized measurements’.

F.X. Rius-Ruiz, et al., Anal. Chem., 201183, 8810-8815.https://doi.org/10.1021/ac202070r

ac-2011-02070r_0006

18. ‘An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for Pb2+ determination’.

E. J. Parra, et al., Chem. Comm. 201147, 2438-2440.https://doi.org/10.1039/C0CC03639K

c0cc03639k-s1

17. ‘Electrogenerated chemiluminescence for potentiometric sensors’.

G.A. Crespo, et al., J. Am. Chem. Soc., 2011, 134, 205-207.https://doi.org/10.1021/ja210600k

1_img_1.png

16. ‘Electrogenerated chemiluminescence triggered by electroseparation of Ru (bpy) 3 2+ across a supported liquid membrane’.

G.A. Crespo, et al., Chem. Comm., 201147, 11644-11646.https://doi.org/10.1039/C1CC14822B

c1cc14822b-f1

15. ‘Advancing membrane electrodes and optical ion sensors’.

E. Bakker, et al., CHIMIA International Journal for Chemistry, 2011, 65, 141-149.https://doi.org/10.2533/chimia.2011.141

14. ‘Potentiometric online detection of aromatic hydrocarbons in aqueous phase using carbon nanotube-based sensors’.

A.P. Washe, et al., Anal. Chem., 201082, 8106-8112.https://doi.org/10.1021/ac101146k

13. ‘Ion-selective electrodes using multi-walled carbon nanotubes as ion-to-electron transducers for the detection of perchlorate’.

E.J. Parra, et al., Analyst., 2009134, 1905-1910.https://doi.org/10.1039/B908224G

b908224g-f5

12. ‘Solid-contact pH-selective electrode using multi-walled carbon nanotubes’.

G.A. Crespo, et al., Anal. Bioanal. Chem., 2009395, 2371-2376.https://doi.org/10.1007/s00216-009-3127-8

11. ‘Determination of choline and derivatives with a solid-contact ion-selective electrode based on octaamide cavitand and carbon nanotubes’.

J. Ampurdanes, et al., Biosens. Bioelectron., 200925, 344-349.https://doi.org/10.1016/j.bios.2009.07.006

1-s2.0-S0956566309003777-gr1

10. ‘Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes’.

G.A. Crespo, et al., Anal. Chem., 200881, 676-681.https://doi.org/10.1021/ac802078z

master.img-007.jpg

9. ‘Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers’.

G.A. Crespo, et al., Anal. Chem., 200880, 1316-1322.https://doi.org/10.1021/ac071156l

master.img-000.jpg

8. ‘Kinetic method for the determination of trace amounts of copper (II) in water matrices by its catalytic effect on the oxidation of 1, 5-diphenylcarbazide’.

G.A. Crespo, et al., Anal. Chim. Acta., 2005539, 317-325.https://doi.org/10.1016/j.aca.2005.03.013

Reviews and Book Chapters

7. ‘Recent Advances in Ion-Selective Membrane Electrodes for In Situ Environmental Water Analysis’.

G.A. Crespo,  Electrochim. Acta, 2017245, 1023-1034.https://doi.org/10.1016/j.electacta.2017.05.159

6. ‘Ionophore-based optical sensors’.

G. Mistlberger, G.A. Crespo, E. Bakker. Annu. Rev. of Anal. Chem., 20147, 483-512.https://doi.org/10.1146/annurev-anchem-071213-020307

5. ‘Dynamic electrochemistry with ionophore based ion-selective membranes’.

G.A. Crespo, Rsc Advances, 20133, 25461-25474.https://doi.org/10.1039/C3RA43751E

4. ‘Nanostructured materials in potentiometry’.

A. Duzgun, et al., Anal. Bioanal. Chem., 2011399, 171-181.https://doi.org/10.1007/s00216-010-3974-3

Monographies

3. ‘Solid Contact Ion Selective Electrodes Based on Carbon Nanotubes’.

G.A. Crespo, 2010, Rovira I Virgili University, Tarragona, Spain. 

International Intelectual Properties

2. ‘Reversible detection of ions with permselective membranes’.

G.A. Crespo, et al., 2014, WO2014016791A2/A3.

1. ‘Electrodes Selective for solid contact ions based on carbon nanotubes’.

G.A. Crespo, et al., 2013, WO2008145787A1.

For more publications, please see: Google Scholar