93. ‘Polyaniline Films as Electrochemical-Proton Pump for Acidification of Thin Layer Samples

A.Wiorek, et al. Anal. Chem. 2019, DOI: https://doi.org/10.1021/acs.analchem.9b03402


92. ‘Cytotoxicity Study of Ionophore-Based Membranes: Toward On-Body and in Vivo Ion Sensing

R.Canovas, et al. ACS Sens. 2019, 4, 9, 2524-2535

cytotoxicity study

91. ‘Lowering the limit of detection of ion-selective membranes backside contacted with a film of poly(3-octylthiophene)

K.Xu, et al., Sens. Actuator B-Chem. 2019, 297, 126781

Detection Silver.jpg

90. ‘Wearable Potentiometric Ion Patch for On-Body Electrolyte Monitoring in Sweat: Toward a Validation Strategy to Ensure Physiological Relevance

M.Parrilla, et al., Anal. Chem.2019,
DOI: https://doi.org/10.1021/acs.analchem.9b02126


89. ‘Ferrocene self assembled monolayer as a redox mediator for triggering ion transfer across nanometer-sized membranes‘.

M.Cuartero, et al., Electrochemica Acta, 2019, DOI: https://doi.org/10.1016/j.electacta.2019.05.091


88. ‘Modern creatinine (Bio)sensing: Challenges of point-of-care platforms‘.

R.Cánovas, et al., Biosensors and Bioelectronics, 2019, 130, 110-124


87. ‘Wearable Potentiometric Sensors for Medical Applications‘.

M.Cuartero, et al., Sensors 2019, 19(2), 363


86. ‘Wearable All-Solid-State Potentiometric Microneedle Patch for Intradermal Potassium Detection‘.

M.Parrilla, et al., Analytical Chemistry, 2019, 91 (2), 1578–1586


85. ‘Wearable potentiometric ion sensors‘.

M.Parrilla, et al., Trends in Analytical Chemistry, 2019, 110, 303-320


84. ‘Using Potentiometric Electrodes Based on Nonselective Polymeric Membranes as Potential Universal Detectors for Ion Chromatography: Investigating an Original Research Problem from an Inquiry-Based-Learning Perspective’.

M. Cuartero, et al., Journal of Chemical Education, DOI: 10.1021/acs.jchemed.8b00455


83. ‘All-solid-state potentiometric sensors: A new wave for in situ aquatic research’.

M. Cuartero, et al., Current Opinion in Electrochemistry, 2018,10, 98-106.



82. ‘Do carbon nanomaterial solid contacts experience double layer capacitive charging or ionic transference in all-solid-state polymeric sensors?’.

M. Cuartero, et al., Elettra Synchrotron Highlights, 2018, 16-17.

Figure 1 

81. ‘In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors‘.

M. Cuartero, et al., Analytical Chemistry, 2018, 90 (7), pp 4702–4710


80. Agarose hydrogel containing immobilized pH buffer microemulsion without increasing permselectivity’. 

M. Coll Crespi, et al., Talanta 2018, 177, 191-196.

Corel main figures paper VII.cdr

79. ‘Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids’.

N. Pankratova, et al., Biosens. Bioelectron., 2018, 99, 70-76.


78. ‘Voltammetric Thin Layer Ionophore Based Films: Part 2. Semi-Empirical Treatment’.

D. Yuan, et al., Anal. Chem.2017, 89, 595–602.


77. ‘Voltammetric Thin Layer Ionophore Based Films: Part 1.  Experimental Evidence and Numerical Simulations Semi-Empirical Treatment’.

D. Yuan, et al., Anal. Chem.2017, 89, 586–594


76. ‘In-line Acidification for Potentiometric Sensing of Nitrite in Natural Waters’.

N. Pankratova, et al., Anal. Chem.2017, 89, 571–575


75. ‘PEDOT (PSS) as solid contact for ion-selective electrodes: the influence of the PEDOT (PSS) film thickness on the equilibration times’.

M. Guzinski, et al., Anal. Chem.2017, 89, 3508-3516.


74. ‘In Situ Detection of Species Relevant to the Carbon Cycle in Seawater with Submersible Potentiometric Probes’.

M. Cuartero, et al., Environ. Sci. Technol. Lett., 20174, 410-415.


73. ‘Electron Hopping Between Fe 3 d States in Ethynylferrocene‐doped Poly (Methyl Methacrylate)‐poly (Decyl Methacrylate) Copolymer Membranes’.

M. Cuartero, et al., Electroanalysis, 2017, DOI: https://doi.org/10.1002/elan.201700510.


72. ‘Electrochemical Mechanism of Ferrocene-Based Redox Molecules in Thin Film Membrane Electrodes’.

M. Cuartero, et al., Electrochim. Acta., 2017238, 357-367.

Microsoft Word - ECA_Manuscript_Revised_8-4-17_Final.docx

71. ‘Robust Solid-Contact Ion Selective Electrodes for High-Resolution In-Situ Measurements in Fresh Water Systems’.

R. Athavale, et al., Environ. Sci. Technol. Lett., 20174, 410-415.


70. ‘Alkalinization of Thin Layer Samples with a Selective Proton Sink Membrane Electrode for Detecting Carbonate by Carbonate-Selective Electrodes’.

S. Jansod, et al., Anal Chem., 2016, 88, 3444-3448.


69. ‘Phenytoin speciation with potentiometric and chronopotentiometric ion-selective membrane electrodes’.

S. Jansod, et al., Biosens. Bioelectron., 2016, 79, 114-120.


68. ‘Flow Chronopotentiometry with Ion-Selective Membranes for Cation, Anion, and Polyion Detection’.

M. Afshar, et al., Anal. Chem., 201688, 3945-3952.


67. ‘Polyurethane ionophore-based thin layer membranes for voltammetric ion activity sensing’.

M. Cuartero, et al., Anal. Chem., 201688, 5649-5654


66. ‘Ionophore-based voltammetric ion activity sensing with thin layer membranes’.

M. Cuartero, et al., Anal. Chem., 201688, 1654-1660.


65. ‘Evidence of double layer/capacitive charging in carbon nanomaterial-based solid contact polymeric ion-selective electrodes’.

M. Cuartero, et al., Chem. Comm., 201652, 9703-9706


64. ‘Electrochemical ion transfer with thin films of poly (3-octylthiophene)’.

M. Cuartero, et al., Anal. Chem., 201688, 6939-6946.


63. ‘All-solid-state potentiometric sensors with a multiwalled carbon nanotube inner transducing layer for anion detection in environmental samples’.

D. Yuan, et al., Anal. Chem., 201587, 8640-8645.


62. ‘Local Acidification of Membrane Surfaces for Potentiometric Sensing of Anions in Environmental Samples’.

N. Pankratova, et al., ACS. Sensors, 20151, 48-54.


61. ‘Potentiometric sensing array for monitoring aquatic systems’.

N. Pankratova, et al., Environ. Sci. Process. Impact., 201517, 906-914.


60. ‘GalvaPot, a custom-made combination galvanostat/potentiostat and high impedance potentiometer for decentralized measurements of ionophore-based electrodes’.

S. Jeanneret, et al., Sens. Actuators B Chem., 2015207, 631-639.


59. ‘Coulometric calcium pump for thin layer sample titrations’.

M. Afshar, et al., Anal. Chem., 201587, 10125-10130.


58. ‘Tandem electrochemical desalination–potentiometric nitrate sensing for seawater analysis’.

M. Cuartero, et al., Anal. Chem., 201587, 8084-8089.


57. ‘Paper-based thin-layer coulometric sensor for halide determination’.

M. Cuartero, et al., Anal. Chem., 201587, 1981-1990.


56. ‘Thin layer samples controlled by dynamic electrochemistry’.

M. Cuartero, et al., CHIMIA International Journal for Chemistry, 2015, 69, 203-206
You can find the article here.

55. ‘Thin layer ionophore-based membrane for multianalyte ion activity detection’.

G.A. Crespo, et al., Anal. Chem., 201587, 7729-7737.


54. ‘Characterization of Salophen Co (III) Acetate Ionophore for Nitrite Recognition’.

G.A. Crespo, et al., Electrochim. Acta, 2015179, 16-23.


53. ‘In Situ Ammonium Profiling Using Solid-Contact Ion-Selective Electrodes in Eutrophic Lakes’.

R. Athavale, et al., Anal. Chem., 201587, 11990-11997.


52. ‘Thin Layer Coulometry of Nitrite with Ion‐Selective Membranes’.

M. Afshar, et al., Electroanalysis, 201527, 609-615.nfig001.gif

51. ‘Thin‐Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection’.

M. Afshar, et al., Angew. Chem. Int. Ed., 2015127, 8228-8231.


50. ‘Ionophore-based ion-selective optical nanosensors operating in exhaustive sensing mode’.

X. Xie, et al., Anal. Chem., 201486, 8770-8775.


49. ‘Potassium-selective optical microsensors based on surface modified polystyrene microspheres’.

X. Xie, et al., Chem. Comm., 201450, 4592-4595.


48. ‘Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane’.

X. Xie, et al., Nature Chemistry, 20146, 202-20.


47. ‘Nitrite‐Selective Electrode Based On Cobalt (II) tert‐Butyl‐Salophen Ionophore’.

B. Neel, et al., Electroanalysis, 201426, 473-480.


46. ‘Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations’.

B. Neel, et al., J. Chem. Education, 201491, 1655-1660.ed-2013-008149_0009

45. ‘Chronopotentiometric carbonate detection with all-solid-state ionophore-based electrodes’.

Z. Jarolimova, et al., Anal. Chem., 201486, 6307-6314.


44. ‘A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements’.

T. Guinovart, et al., Anal. Chim. Acta, 2014821, 72-80.


43. ‘A low-cost thin layer coulometric microfluidic device based on an ion-selective membrane for calcium determination’.

D. Dorokhin, et al., Analyst, 2014139, 48-51.


42. ‘Exhaustive thin-layer cyclic voltammetry for absolute multianalyte halide detection’.

M. Cuartero, et al., Anal. Chem., 201486, 11387-11395.
You can find the article here.

41. ‘Chronopotentiometry of pure electrolytes with anion-exchange donnan exclusion membranes’.

G.A. Crespo, et al., Anal. Chem., 2014, 86, 1357-1360.


40. ‘Chronopotentiometry of pure electrolytes with anion-exchange donnan exclusion membranes’.

G.A. Crespo, et al., J. Electroanal. Chem., 2014, 731, 100-106.


39. ‘Environmental sensing of aquatic systems at the University of Geneva’.

E. Bakker, et al., CHIMIA International Journal for Chemistry, 2014, 68, 772-777.
You can find the article here.

38. ‘Direct alkalinity detection with ion-selective chronopotentiometry’.

M. Afshar, et al., Anal. Chem., 201486, 6461-6470.


37. ‘Counter electrode based on an ion-exchanger Donnan exclusion membrane for bioelectroanalysis’.

M. Afshar, et al., Biosens. Bioelectron., 201461, 64-69.

Last version GC

36. ‘Oxazinoindolines as fluorescent H+ turn-on chromoionophores for optical and electrochemical ion sensors’.

X. Xie, et al., Anal. Chem., 201385, 7434-7440.


35. ‘High‐Selective Tramadol Sensor Based on Modified Molecularly Imprinted Polymer Carbon Paste Electrode with Multiwalled Carbon Nanotubes’.

M. Soleimani, et al., Electroanalysis, 2013, 25, 1159-1168.


34. ‘PVC‐Based Ion‐Selective Electrodes with Enhanced Biocompatibility by Surface Modification with “Click” Chemistry’.

M. Pawlak, et al., Electroanalysis, 201325, 1840-1846.


33. ‘Photoresponsive ion extraction/release systems: dynamic ion optodes for calcium and sodium based on photochromic spiropyrans’.

G. Mistlberger, et al., Anal. Chem, 201385, 2983-2990.


32. ‘All solid state chronopotentiometric ion-selective electrodes based on ferrocene functionalized PVC’.

Z. Jarolimova, et al., J. Electroanal. Chem., 2013709, 118-125.

Microsoft Word - Graphical Abstract

31. ‘Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes’.

T. Guinovart, et al., Analyst, 2013138, 5208-5215.


30. ‘Potentiometric sensors with ion-exchange donnan exclusion membranes’.

E. Grygolowicz-Pawlak, et al., Anal. Chem., 201385, 6208-6212.


29. ‘Detecting heparin in whole blood for point of care anticoagulation control during surgery’.

E. Bakker, et al., CHIMIA International Journal for Chemistry, 2013, 67, 350-350.
You can find the article here.

28. ‘The oxidation state of copper in bimetallic (Pt–Cu, Pd–Cu) catalysts during water denitration’.

J. Sa, et al., Catal. Sci. Technol., 2012, 2, 794-799.


27. ‘Paper based ion-selective potentiometric sensors’.

M. Novell, et al., Anal. Chem., 201284, 4695-4702.


26. ‘Photodynamic ion sensor systems with spiropyran: photoactivated acidity changes in plasticized poly (vinyl chloride)’.

G. Mistlberger, et al., Chem. Comm., 201248, 5662-5664.


25. ‘Nanostructured assemblies for ion-sensors: functionalization of multi-wall carbon nanotubes with benzo-18-crown-6 for Pb 2+ determination’.

G. Kerric, et al., J. Mater. Chem., 201222, 16611-16617.


24. ‘Direct ion speciation analysis with ion-selective membranes operated in a sequential potentiometric/time resolved chronopotentiometric sensing mode’.

M. Afshar, et al., Anal. Chem., 201284, 8813-8821.


23. ‘Direct detection of acidity, alkalinity, and pH with membrane electrodes’.

G.A. Crespo, et al., Anal. Chem., 201284, 10165-10169.


22. ‘Towards Ion‐Selective Membranes with Electrogenerated Chemiluminescence Detection: Visualizing Selective Ru (bpy) 32+ Transport Across a Plasticized Poly (vinyl chloride) Membrane’.

G.A. Crespo, et al., Electroanalysis, 201224, 61-68.


21. ‘Ionophore-based ion optodes without a reference ion: electrogenerated chemiluminescence for potentiometric sensors’.

G.A. Crespo, et al., Analyst, 2012137, 4988-4994.


20. ‘Reversible sensing of the anticoagulant heparin with protamine permselective membranes’.

G.A. Crespo, et al., Angew. Chem. Int. Ed., 201251, 12575-12578.


19. ‘Potentiometric strip cell based on carbon nanotubes as transducer layer: toward low-cost decentralized measurements’.

F.X. Rius-Ruiz, et al., Anal. Chem., 201183, 8810-8815.


18. ‘An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for Pb2+ determination’.

E. J. Parra, et al., Chem. Comm. 201147, 2438-2440.


17. ‘Electrogenerated chemiluminescence for potentiometric sensors’.

G.A. Crespo, et al., J. Am. Chem. Soc., 2011, 134, 205-207.


16. ‘Electrogenerated chemiluminescence triggered by electroseparation of Ru (bpy) 3 2+ across a supported liquid membrane’.

G.A. Crespo, et al., Chem. Comm., 201147, 11644-11646.


15. ‘Advancing membrane electrodes and optical ion sensors’.

E. Bakker, et al., CHIMIA International Journal for Chemistry, 2011, 65, 141-149.https://doi.org/10.2533/chimia.2011.141

14. ‘Potentiometric online detection of aromatic hydrocarbons in aqueous phase using carbon nanotube-based sensors’.

A.P. Washe, et al., Anal. Chem., 201082, 8106-8112.https://doi.org/10.1021/ac101146k

13. ‘Ion-selective electrodes using multi-walled carbon nanotubes as ion-to-electron transducers for the detection of perchlorate’.

E.J. Parra, et al., Analyst., 2009134, 1905-1910.


12. ‘Solid-contact pH-selective electrode using multi-walled carbon nanotubes’.

G.A. Crespo, et al., Anal. Bioanal. Chem., 2009395, 2371-2376.https://doi.org/10.1007/s00216-009-3127-8

11. ‘Determination of choline and derivatives with a solid-contact ion-selective electrode based on octaamide cavitand and carbon nanotubes’.

J. Ampurdanes, et al., Biosens. Bioelectron., 200925, 344-349.[


10. ‘Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes’.

G.A. Crespo, et al., Anal. Chem., 200881, 676-681.


9. ‘Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers’.

G.A. Crespo, et al., Anal. Chem., 200880, 1316-1322.


8. ‘Kinetic method for the determination of trace amounts of copper (II) in water matrices by its catalytic effect on the oxidation of 1, 5-diphenylcarbazide’.

G.A. Crespo, et al., Anal. Chim. Acta., 2005539, 317-325.https://doi.org/10.1016/j.aca.2005.03.013

Reviews and Book Chapters

7. ‘Recent Advances in Ion-Selective Membrane Electrodes for In Situ Environmental Water Analysis’.

G.A. Crespo,  Electrochim. Acta, 2017245, 1023-1034.https://doi.org/10.1016/j.electacta.2017.05.159

6. ‘Ionophore-based optical sensors’.

G. Mistlberger, G.A. Crespo, E. Bakker. Annu. Rev. of Anal. Chem., 20147, 483-512.https://doi.org/10.1146/annurev-anchem-071213-020307

5. ‘Dynamic electrochemistry with ionophore based ion-selective membranes’.

G.A. Crespo, Rsc Advances, 20133, 25461-25474.https://doi.org/10.1039/C3RA43751E

4. ‘Nanostructured materials in potentiometry’.

A. Duzgun, et al., Anal. Bioanal. Chem., 2011399, 171-181.https://doi.org/10.1007/s00216-010-3974-3


3. ‘Solid Contact Ion Selective Electrodes Based on Carbon Nanotubes’.

G.A. Crespo, 2010, Rovira I Virgili University, Tarragona, Spain. 

International Intelectual Properties

2. ‘Reversible detection of ions with permselective membranes’.

G.A. Crespo, et al., 2014, WO2014016791A2/A3.

1. ‘Electrodes Selective for solid contact ions based on carbon nanotubes’.

G.A. Crespo, et al., 2013, WO2008145787A1.

For more publications, please see: Google Scholar

%d bloggers like this: