85. ‘Wearable potentiometric ion sensors‘.

M.Parrilla, et al., Trends in Analytical Chemistry, January 2019, 110, 303-320



84. ‘All-solid-state potentiometric sensors: A new wave for in situ aquatic research’.

M. Cuartero, et al., Journal of Chemical Education, DOI: 10.1021/acs.jchemed.8b00455



83. ‘All-solid-state potentiometric sensors: A new wave for in situ aquatic research’.

M. Cuartero, et al., Current Opinion in Electrochemistry, 2018,10, 98-106.



82. ‘Do carbon nanomaterial solid contacts experience double layer capacitive charging or ionic transference in all-solid-state polymeric sensors?’.

M. Cuartero, et al., Elettra Synchrotron Highlights, 2018, 16-17.

Figure 1 

81. ‘In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors‘.

M. Cuartero, et al., Anal. Chem., 2018, Under Revision, Coming soon.     

80. Agarose hydrogel containing immobilized pH buffer microemulsion without increasing permselectivity’. 

M. Coll Crespi, et al., Talanta 2018, 177, 191-196.https://doi.org/10.1016/j.talanta.2017.08.053

Corel main figures paper VII.cdr

79. ‘Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids’.

N. Pankratova, et al., Biosens. Bioelectron., 2018, 99, 70-76.https://doi.org/10.1016/j.bios.2017.07.001


78. ‘Voltammetric Thin Layer Ionophore Based Films: Part 2. Semi-Empirical Treatment’.

D. Yuan, et al., Anal. Chem.2017, 89, 595–602.https://doi.org/10.1021/acs.analchem.6b03355


77. ‘Voltammetric Thin Layer Ionophore Based Films: Part 1.  Experimental Evidence and Numerical Simulations Semi-Empirical Treatment’.

D. Yuan, et al., Anal. Chem.2017, 89, 586–594.https://doi.org/10.1021/acs.analchem.6b03354


76. ‘In-line Acidification for Potentiometric Sensing of Nitrite in Natural Waters’.

N. Pankratova, et al., Anal. Chem.2017, 89, 571–575.https://doi.org/10.1021/acs.analchem.6b03946


75. ‘PEDOT (PSS) as solid contact for ion-selective electrodes: the influence of the PEDOT (PSS) film thickness on the equilibration times’.

M. Guzinski, et al., Anal. Chem.2017, 89, 3508-3516.https://doi.org/10.1021/acs.analchem.6b04625


74. ‘In Situ Detection of Species Relevant to the Carbon Cycle in Seawater with Submersible Potentiometric Probes’.

M. Cuartero, et al., Environ. Sci. Technol. Lett., 20174, 410-415.https://doi.org/10.1021/acs.estlett.7b00388


73. ‘Electron Hopping Between Fe 3 d States in Ethynylferrocene‐doped Poly (Methyl Methacrylate)‐poly (Decyl Methacrylate) Copolymer Membranes’.

M. Cuartero, et al., Electroanalysis, 2017, No assigned.https://doi.org/10.1002/elan.201700510


72. ‘Electrochemical Mechanism of Ferrocene-Based Redox Molecules in Thin Film Membrane Electrodes’.

M. Cuartero, et al., Electrochim. Acta., 2017238, 357-367.https://doi.org/10.1016/j.electacta.2017.04.047

Microsoft Word - ECA_Manuscript_Revised_8-4-17_Final.docx

71. ‘Robust Solid-Contact Ion Selective Electrodes for High-Resolution In-Situ Measurements in Fresh Water Systems’.

R. Athavale, et al., Environ. Sci. Technol. Lett., 20174, 410-415.https://doi.org/10.1021/acs.estlett.7b00130


70. ‘Alkalinization of Thin Layer Samples with a Selective Proton Sink Membrane Electrode for Detecting Carbonate by Carbonate-Selective Electrodes’.

S. Jansod, et al., Anal Chem., 2016, 88, 3444-3448.https://doi.org/10.1021/acs.analchem.6b00346


69. ‘Phenytoin speciation with potentiometric and chronopotentiometric ion-selective membrane electrodes’.

S. Jansod, et al., Biosens. Bioelectron., 2016, 79, 114-120.https://doi.org/10.1016/j.bios.2015.12.011


68. ‘Flow Chronopotentiometry with Ion-Selective Membranes for Cation, Anion, and Polyion Detection’.

M. Afshar, et al., Anal. Chem., 201688, 3945-3952.https://doi.org/10.1021/acs.analchem.6b00141


67. ‘Polyurethane ionophore-based thin layer membranes for voltammetric ion activity sensing’.

M. Cuartero, et al., Anal. Chem., 201688, 5649-5654.https://doi.org/10.1021/acs.analchem.6b01085 


66. ‘Ionophore-based voltammetric ion activity sensing with thin layer membranes’.

M. Cuartero, et al., Anal. Chem., 201688, 1654-1660.https://doi.org/10.1021/acs.analchem.5b03611


65. ‘Evidence of double layer/capacitive charging in carbon nanomaterial-based solid contact polymeric ion-selective electrodes’.

M. Cuartero, et al., Chem. Comm., 201652, 9703-9706.https://doi.org/10.1039/c6cc04876e


64. ‘Electrochemical ion transfer with thin films of poly (3-octylthiophene)’.

M. Cuartero, et al., Anal. Chem., 201688, 6939-6946.https://doi.org/10.1021/acs.analchem.6b01800 


63. ‘All-solid-state potentiometric sensors with a multiwalled carbon nanotube inner transducing layer for anion detection in environmental samples’.

D. Yuan, et al., Anal. Chem., 201587, 8640-8645.https://doi.org/10.1021/acs.analchem.5b01941


62. ‘Local Acidification of Membrane Surfaces for Potentiometric Sensing of Anions in Environmental Samples’.

N. Pankratova, et al., ACS. Sensors, 20151, 48-54.https://doi.org/10.1021/acssensors.5b00015


61. ‘Potentiometric sensing array for monitoring aquatic systems’.

N. Pankratova, et al., Environ. Sci. Process. Impact., 201517, 906-914.https://doi.org/10.1039/c5em00038f



60. ‘GalvaPot, a custom-made combination galvanostat/potentiostat and high impedance potentiometer for decentralized measurements of ionophore-based electrodes’.

S. Jeanneret, et al., Sens. Actuators B Chem., 2015207, 631-639.https://doi.org/10.1016/j.snb.2014.10.084


59. ‘Coulometric calcium pump for thin layer sample titrations’.

M. Afshar, et al., Anal. Chem., 201587, 10125-10130.https://doi.org/10.1021/acs.analchem.5b02856


58. ‘Tandem electrochemical desalination–potentiometric nitrate sensing for seawater analysis’.

M. Cuartero, et al., Anal. Chem., 201587, 8084-8089.https://doi.org/10.1021/acs.analchem.5b01973


57. ‘Paper-based thin-layer coulometric sensor for halide determination’.

M. Cuartero, et al., Anal. Chem., 201587, 1981-1990.https://doi.org/10.1021/ac504400w


56. ‘Thin layer samples controlled by dynamic electrochemistry’.

M. Cuartero, et al., CHIMIA International Journal for Chemistry, 2015, 69, 203-206.https://doi.org/10.2533/chimia.2015.203

55. ‘Thin layer ionophore-based membrane for multianalyte ion activity detection’.

G.A. Crespo, et al., Anal. Chem., 201587, 7729-7737.https://doi.org/10.1021/acs.analchem.5b01459


54. ‘Characterization of Salophen Co (III) Acetate Ionophore for Nitrite Recognition’.

G.A. Crespo, et al., Electrochim. Acta, 2015179, 16-23.https://doi.org/10.1016/j.electacta.2015.03.180



53. ‘In Situ Ammonium Profiling Using Solid-Contact Ion-Selective Electrodes in Eutrophic Lakes’.

R. Athavale, et al., Anal. Chem., 201587, 11990-11997.https://doi.org/10.1021/acs.analchem.5b02424


52. ‘Thin Layer Coulometry of Nitrite with Ion‐Selective Membranes’.

M. Afshar, et al., Electroanalysis, 201527, 609-615.https://doi.org/10.1002/elan.201400522


51. ‘Thin‐Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection’.

M. Afshar, et al., Angew. Chem. Int. Ed., 2015127, 8228-8231.https://doi.org/10.1002/ange.201500797


50. ‘Ionophore-based ion-selective optical nanosensors operating in exhaustive sensing mode’.

X. Xie, et al., Anal. Chem., 201486, 8770-8775.https://doi.org/10.1021/ac5019606


49. ‘Potassium-selective optical microsensors based on surface modified polystyrene microspheres’.

X. Xie, et al., Chem. Comm., 201450, 4592-4595.https://doi.org/10.1039/C4CC01313A


48. ‘Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane’.

X. Xie, et al., Nature Chemistry, 20146, 202-20.https://doi.org/10.1038/nchem.1858


47. ‘Nitrite‐Selective Electrode Based On Cobalt (II) tert‐Butyl‐Salophen Ionophore’.

B. Neel, et al., Electroanalysis, 201426, 473-480.https://doi.org/10.1002/elan.201300607


46. ‘Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations’.

B. Neel, et al., J. Chem. Education, 201491, 1655-1660.https://doi.org/10.1021/ed4008149ed-2013-008149_0009

45. ‘Chronopotentiometric carbonate detection with all-solid-state ionophore-based electrodes’.

Z. Jarolimova, et al., Anal. Chem., 201486, 6307-6314.ttps://doi.org/10.1021/ac5004163


44. ‘A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements’.

T. Guinovart, et al., Anal. Chim. Acta, 2014821, 72-80.https://doi.org/10.1016/j.aca.2014.02.028


43. ‘A low-cost thin layer coulometric microfluidic device based on an ion-selective membrane for calcium determination’.

D. Dorokhin, et al., Analyst, 2014139, 48-51.https://doi.org/10.1039/C3AN01715J


42. ‘Exhaustive thin-layer cyclic voltammetry for absolute multianalyte halide detection’.

M. Cuartero, et al., Anal. Chem., 201486, 11387-11395.https://doi.org/10.1021/ac503344f

41. ‘Chronopotentiometry of pure electrolytes with anion-exchange donnan exclusion membranes’.

G.A. Crespo, et al., Anal. Chem., 2014, 86, 1357-1360.https://doi.org/10.1021/ac403902f


40. ‘Chronopotentiometry of pure electrolytes with anion-exchange donnan exclusion membranes’.

G.A. Crespo, et al., J. Electroanal. Chem., 2014, 731, 100-106.https://doi.org/10.1016/j.jelechem.2014.08.007



39. ‘Environmental sensing of aquatic systems at the University of Geneva’.

E. Bakker, et al., CHIMIA International Journal for Chemistry, 2014, 68, 772-777.https://doi.org/10.2533/chimia.2014.772

38. ‘Direct alkalinity detection with ion-selective chronopotentiometry’.

M. Afshar, et al., Anal. Chem., 201486, 6461-6470.https://doi.org/10.1021/ac500968c



37. ‘Counter electrode based on an ion-exchanger Donnan exclusion membrane for bioelectroanalysis’.

M. Afshar, et al., Biosens. Bioelectron., 201461, 64-69.https://doi.org/10.1016/j.bios.2014.04.039

Last version GC

36. ‘Oxazinoindolines as fluorescent H+ turn-on chromoionophores for optical and electrochemical ion sensors’.

X. Xie, et al., Anal. Chem., 201385, 7434-7440.https://doi.org/10.1021/ac401367b


35. ‘High‐Selective Tramadol Sensor Based on Modified Molecularly Imprinted Polymer Carbon Paste Electrode with Multiwalled Carbon Nanotubes’.

M. Soleimani, et al., Electroanalysis, 2013, 25, 1159-1168.https://doi.org/10.1002/elan.201200601


34. ‘PVC‐Based Ion‐Selective Electrodes with Enhanced Biocompatibility by Surface Modification with “Click” Chemistry’.

M. Pawlak, et al., Electroanalysis, 201325, 1840-1846.https://doi.org/10.1002/elan.201300212


33. ‘Photoresponsive ion extraction/release systems: dynamic ion optodes for calcium and sodium based on photochromic spiropyrans’.

G. Mistlberger, et al., Anal. Chem, 201385, 2983-2990.https://doi.org/10.1021/ac4000283


32. ‘All solid state chronopotentiometric ion-selective electrodes based on ferrocene functionalized PVC’.

Z. Jarolimova, et al., J. Electroanal. Chem., 2013709, 118-125.https://doi.org/10.1016/j.jelechem.2013.10.011

Microsoft Word - Graphical Abstract

31. ‘Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes’.

T. Guinovart, et al., Analyst, 2013138, 5208-5215.https://doi.org/10.1039/C3AN00710C


30. ‘Potentiometric sensors with ion-exchange donnan exclusion membranes’.

E. Grygolowicz-Pawlak, et al., Anal. Chem., 201385, 6208-6212.https://doi.org/10.1021/ac400470n


29. ‘Detecting heparin in whole blood for point of care anticoagulation control during surgery’.

E. Bakker, et al., CHIMIA International Journal for Chemistry, 2013, 67, 350-350.https://doi.org/10.2533/chimia.2013.350

28. ‘The oxidation state of copper in bimetallic (Pt–Cu, Pd–Cu) catalysts during water denitration’.

J. Sa, et al., Catal. Sci. Technol., 2012, 2, 794-799.https://doi.org/10.1039/C2CY00461E


27. ‘Paper based ion-selective potentiometric sensors’.

M. Novell, et al., Anal. Chem., 201284, 4695-4702.https://doi.org/10.1021/ac202979j


26. ‘Photodynamic ion sensor systems with spiropyran: photoactivated acidity changes in plasticized poly (vinyl chloride)’.

G. Mistlberger, et al., Chem. Comm., 201248, 5662-5664.https://doi.org/10.1039/C2CC30657C


25. ‘Nanostructured assemblies for ion-sensors: functionalization of multi-wall carbon nanotubes with benzo-18-crown-6 for Pb 2+ determination’.

G. Kerric, et al., J. Mater. Chem., 201222, 16611-16617.https://doi.org/10.1039/C2JM33153E


24. ‘Direct ion speciation analysis with ion-selective membranes operated in a sequential potentiometric/time resolved chronopotentiometric sensing mode’.

M. Afshar, et al., Anal. Chem., 201284, 8813-8821.https://doi.org/10.1021/ac302092m


23. ‘Direct detection of acidity, alkalinity, and pH with membrane electrodes’.

G.A. Crespo, et al., Anal. Chem., 201284, 10165-10169.https://doi.org/10.1021/ac302868u


22. ‘Towards Ion‐Selective Membranes with Electrogenerated Chemiluminescence Detection: Visualizing Selective Ru (bpy) 32+ Transport Across a Plasticized Poly (vinyl chloride) Membrane’.

G.A. Crespo, et al., Electroanalysis, 201224, 61-68.https://doi.org/10.1002/elan.201100434


21. ‘Ionophore-based ion optodes without a reference ion: electrogenerated chemiluminescence for potentiometric sensors’.

G.A. Crespo, et al., Analyst, 2012137, 4988-4994.https://doi.org/10.1039/C2AN35516G


20. ‘Reversible sensing of the anticoagulant heparin with protamine permselective membranes’.

G.A. Crespo, et al., Angew. Chem. Int. Ed., 201251, 12575-12578.https://doi.org/10.1002/anie.201207444


19. ‘Potentiometric strip cell based on carbon nanotubes as transducer layer: toward low-cost decentralized measurements’.

F.X. Rius-Ruiz, et al., Anal. Chem., 201183, 8810-8815.https://doi.org/10.1021/ac202070r


18. ‘An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for Pb2+ determination’.

E. J. Parra, et al., Chem. Comm. 201147, 2438-2440.https://doi.org/10.1039/C0CC03639K


17. ‘Electrogenerated chemiluminescence for potentiometric sensors’.

G.A. Crespo, et al., J. Am. Chem. Soc., 2011, 134, 205-207.https://doi.org/10.1021/ja210600k


16. ‘Electrogenerated chemiluminescence triggered by electroseparation of Ru (bpy) 3 2+ across a supported liquid membrane’.

G.A. Crespo, et al., Chem. Comm., 201147, 11644-11646.https://doi.org/10.1039/C1CC14822B


15. ‘Advancing membrane electrodes and optical ion sensors’.

E. Bakker, et al., CHIMIA International Journal for Chemistry, 2011, 65, 141-149.https://doi.org/10.2533/chimia.2011.141

14. ‘Potentiometric online detection of aromatic hydrocarbons in aqueous phase using carbon nanotube-based sensors’.

A.P. Washe, et al., Anal. Chem., 201082, 8106-8112.https://doi.org/10.1021/ac101146k

13. ‘Ion-selective electrodes using multi-walled carbon nanotubes as ion-to-electron transducers for the detection of perchlorate’.

E.J. Parra, et al., Analyst., 2009134, 1905-1910.https://doi.org/10.1039/B908224G


12. ‘Solid-contact pH-selective electrode using multi-walled carbon nanotubes’.

G.A. Crespo, et al., Anal. Bioanal. Chem., 2009395, 2371-2376.https://doi.org/10.1007/s00216-009-3127-8

11. ‘Determination of choline and derivatives with a solid-contact ion-selective electrode based on octaamide cavitand and carbon nanotubes’.

J. Ampurdanes, et al., Biosens. Bioelectron., 200925, 344-349.https://doi.org/10.1016/j.bios.2009.07.006


10. ‘Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes’.

G.A. Crespo, et al., Anal. Chem., 200881, 676-681.https://doi.org/10.1021/ac802078z


9. ‘Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers’.

G.A. Crespo, et al., Anal. Chem., 200880, 1316-1322.https://doi.org/10.1021/ac071156l


8. ‘Kinetic method for the determination of trace amounts of copper (II) in water matrices by its catalytic effect on the oxidation of 1, 5-diphenylcarbazide’.

G.A. Crespo, et al., Anal. Chim. Acta., 2005539, 317-325.https://doi.org/10.1016/j.aca.2005.03.013

Reviews and Book Chapters

7. ‘Recent Advances in Ion-Selective Membrane Electrodes for In Situ Environmental Water Analysis’.

G.A. Crespo,  Electrochim. Acta, 2017245, 1023-1034.https://doi.org/10.1016/j.electacta.2017.05.159

6. ‘Ionophore-based optical sensors’.

G. Mistlberger, G.A. Crespo, E. Bakker. Annu. Rev. of Anal. Chem., 20147, 483-512.https://doi.org/10.1146/annurev-anchem-071213-020307

5. ‘Dynamic electrochemistry with ionophore based ion-selective membranes’.

G.A. Crespo, Rsc Advances, 20133, 25461-25474.https://doi.org/10.1039/C3RA43751E

4. ‘Nanostructured materials in potentiometry’.

A. Duzgun, et al., Anal. Bioanal. Chem., 2011399, 171-181.https://doi.org/10.1007/s00216-010-3974-3


3. ‘Solid Contact Ion Selective Electrodes Based on Carbon Nanotubes’.

G.A. Crespo, 2010, Rovira I Virgili University, Tarragona, Spain. 

International Intelectual Properties

2. ‘Reversible detection of ions with permselective membranes’.

G.A. Crespo, et al., 2014, WO2014016791A2/A3.

1. ‘Electrodes Selective for solid contact ions based on carbon nanotubes’.

G.A. Crespo, et al., 2013, WO2008145787A1.

For more publications, please see: Google Scholar

%d bloggers like this: