91. ‘Lowering the limit of detection of ion-selective membranes backside contacted with a film of poly(3-octylthiophene)

K.Xu, et al., Sens. Actuator B-Chem. 2019, 297, 126781

Detection Silver.jpg

90. ‘Wearable Potentiometric Ion Patch for On-Body Electrolyte Monitoring in Sweat: Toward a Validation Strategy to Ensure Physiological Relevance

M.Parrilla, et al., Anal. Chem.2019,
DOI: https://doi.org/10.1021/acs.analchem.9b02126

Wearable_AnalyticalChem2019.gif

89. ‘Ferrocene self assembled monolayer as a redox mediator for triggering ion transfer across nanometer-sized membranes‘.

M.Cuartero, et al., Electrochemica Acta, 2019, DOI: https://doi.org/10.1016/j.electacta.2019.05.091

20180912_125708013_iOS.jpg

88. ‘Modern creatinine (Bio)sensing: Challenges of point-of-care platforms‘.

R.Cánovas, et al., Biosensors and Bioelectronics, 2019, 130, 110-124

CreatinineSensor

87. ‘Wearable Potentiometric Sensors for Medical Applications‘.

M.Cuartero, et al., Sensors 2019, 19(2), 363

sensors-19-00363-g001

86. ‘Wearable All-Solid-State Potentiometric Microneedle Patch for Intradermal Potassium Detection‘.

M.Parrilla, et al., Analytical Chemistry, 2019, 91 (2), 1578–1586

ac-2018-04877v_0005

85. ‘Wearable potentiometric ion sensors‘.

M.Parrilla, et al., Trends in Analytical Chemistry, 2019, 110, 303-320

Trac_Jan2019.jpg

84. ‘Using Potentiometric Electrodes Based on Nonselective Polymeric Membranes as Potential Universal Detectors for Ion Chromatography: Investigating an Original Research Problem from an Inquiry-Based-Learning Perspective’.

M. Cuartero, et al., Journal of Chemical Education, DOI: 10.1021/acs.jchemed.8b00455

Pot_IC.gif

83. ‘All-solid-state potentiometric sensors: A new wave for in situ aquatic research’.

M. Cuartero, et al., Current Opinion in Electrochemistry, 2018,10, 98-106.

Submers

 

82. ‘Do carbon nanomaterial solid contacts experience double layer capacitive charging or ionic transference in all-solid-state polymeric sensors?’.

M. Cuartero, et al., Elettra Synchrotron Highlights, 2018, 16-17.

Figure 1 

81. ‘In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors‘.

M. Cuartero, et al., Analytical Chemistry, 2018, 90 (7), pp 4702–4710

ac-2017-052992_0004

80. Agarose hydrogel containing immobilized pH buffer microemulsion without increasing permselectivity’. 

M. Coll Crespi, et al., Talanta 2018, 177, 191-196.

Corel main figures paper VII.cdr

79. ‘Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids’.

N. Pankratova, et al., Biosens. Bioelectron., 2018, 99, 70-76.

Main_Figures

78. ‘Voltammetric Thin Layer Ionophore Based Films: Part 2. Semi-Empirical Treatment’.

D. Yuan, et al., Anal. Chem.2017, 89, 595–602.

ac-2016-03355h_0009

77. ‘Voltammetric Thin Layer Ionophore Based Films: Part 1.  Experimental Evidence and Numerical Simulations Semi-Empirical Treatment’.

D. Yuan, et al., Anal. Chem.2017, 89, 586–594

ac-2016-033542_0006

76. ‘In-line Acidification for Potentiometric Sensing of Nitrite in Natural Waters’.

N. Pankratova, et al., Anal. Chem.2017, 89, 571–575

ac-2016-039464_0005

75. ‘PEDOT (PSS) as solid contact for ion-selective electrodes: the influence of the PEDOT (PSS) film thickness on the equilibration times’.

M. Guzinski, et al., Anal. Chem.2017, 89, 3508-3516.

 ac-2016-04625d_0005.gif

74. ‘In Situ Detection of Species Relevant to the Carbon Cycle in Seawater with Submersible Potentiometric Probes’.

M. Cuartero, et al., Environ. Sci. Technol. Lett., 20174, 410-415.

ez-2017-003888_0004.gif 

73. ‘Electron Hopping Between Fe 3 d States in Ethynylferrocene‐doped Poly (Methyl Methacrylate)‐poly (Decyl Methacrylate) Copolymer Membranes’.

M. Cuartero, et al., Electroanalysis, 2017, DOI: https://doi.org/10.1002/elan.201700510.

elan201700510-fig-5001

72. ‘Electrochemical Mechanism of Ferrocene-Based Redox Molecules in Thin Film Membrane Electrodes’.

M. Cuartero, et al., Electrochim. Acta., 2017238, 357-367.

Microsoft Word - ECA_Manuscript_Revised_8-4-17_Final.docx

71. ‘Robust Solid-Contact Ion Selective Electrodes for High-Resolution In-Situ Measurements in Fresh Water Systems’.

R. Athavale, et al., Environ. Sci. Technol. Lett., 20174, 410-415.

ez-2017-001302_0003

70. ‘Alkalinization of Thin Layer Samples with a Selective Proton Sink Membrane Electrode for Detecting Carbonate by Carbonate-Selective Electrodes’.

S. Jansod, et al., Anal Chem., 2016, 88, 3444-3448.

ac-2016-003462_0006

69. ‘Phenytoin speciation with potentiometric and chronopotentiometric ion-selective membrane electrodes’.

S. Jansod, et al., Biosens. Bioelectron., 2016, 79, 114-120.

untitled

68. ‘Flow Chronopotentiometry with Ion-Selective Membranes for Cation, Anion, and Polyion Detection’.

M. Afshar, et al., Anal. Chem., 201688, 3945-3952.

ac-2016-001418_0010

67. ‘Polyurethane ionophore-based thin layer membranes for voltammetric ion activity sensing’.

M. Cuartero, et al., Anal. Chem., 201688, 5649-5654

ac-2016-010852_0006

66. ‘Ionophore-based voltammetric ion activity sensing with thin layer membranes’.

M. Cuartero, et al., Anal. Chem., 201688, 1654-1660.

ac-2015-03611r_0009

65. ‘Evidence of double layer/capacitive charging in carbon nanomaterial-based solid contact polymeric ion-selective electrodes’.

M. Cuartero, et al., Chem. Comm., 201652, 9703-9706

c6cc04876e-s2_hi-res

64. ‘Electrochemical ion transfer with thin films of poly (3-octylthiophene)’.

M. Cuartero, et al., Anal. Chem., 201688, 6939-6946.

ac-2016-01800d_0007

63. ‘All-solid-state potentiometric sensors with a multiwalled carbon nanotube inner transducing layer for anion detection in environmental samples’.

D. Yuan, et al., Anal. Chem., 201587, 8640-8645.

ac-2015-01941s_0007

62. ‘Local Acidification of Membrane Surfaces for Potentiometric Sensing of Anions in Environmental Samples’.

N. Pankratova, et al., ACS. Sensors, 20151, 48-54.

se-2015-000154_0006

61. ‘Potentiometric sensing array for monitoring aquatic systems’.

N. Pankratova, et al., Environ. Sci. Process. Impact., 201517, 906-914.

c5em00038f-f3_hi-res

60. ‘GalvaPot, a custom-made combination galvanostat/potentiostat and high impedance potentiometer for decentralized measurements of ionophore-based electrodes’.

S. Jeanneret, et al., Sens. Actuators B Chem., 2015207, 631-639.

1-s2.0-S0925400514012969-gr1

59. ‘Coulometric calcium pump for thin layer sample titrations’.

M. Afshar, et al., Anal. Chem., 201587, 10125-10130.

ac-2015-02856x_0010

58. ‘Tandem electrochemical desalination–potentiometric nitrate sensing for seawater analysis’.

M. Cuartero, et al., Anal. Chem., 201587, 8084-8089.

ac-2015-019734_0006

57. ‘Paper-based thin-layer coulometric sensor for halide determination’.

M. Cuartero, et al., Anal. Chem., 201587, 1981-1990.

ac-2014-04400w_0009-2

56. ‘Thin layer samples controlled by dynamic electrochemistry’.

M. Cuartero, et al., CHIMIA International Journal for Chemistry, 2015, 69, 203-206
You can find the article here.

55. ‘Thin layer ionophore-based membrane for multianalyte ion activity detection’.

G.A. Crespo, et al., Anal. Chem., 201587, 7729-7737.

ac-2015-01459b_0005.gif

54. ‘Characterization of Salophen Co (III) Acetate Ionophore for Nitrite Recognition’.

G.A. Crespo, et al., Electrochim. Acta, 2015179, 16-23.

Fig-NO2-V15

53. ‘In Situ Ammonium Profiling Using Solid-Contact Ion-Selective Electrodes in Eutrophic Lakes’.

R. Athavale, et al., Anal. Chem., 201587, 11990-11997.

ac-2015-02424z_0007.gif

52. ‘Thin Layer Coulometry of Nitrite with Ion‐Selective Membranes’.

M. Afshar, et al., Electroanalysis, 201527, 609-615.nfig001.gif

51. ‘Thin‐Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection’.

M. Afshar, et al., Angew. Chem. Int. Ed., 2015127, 8228-8231.

nsch001

50. ‘Ionophore-based ion-selective optical nanosensors operating in exhaustive sensing mode’.

X. Xie, et al., Anal. Chem., 201486, 8770-8775.

ac-2014-019606_0007

49. ‘Potassium-selective optical microsensors based on surface modified polystyrene microspheres’.

X. Xie, et al., Chem. Comm., 201450, 4592-4595.

c4cc01313a-f1_hi-res

48. ‘Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane’.

X. Xie, et al., Nature Chemistry, 20146, 202-20.

nchem.1858-f1.jpg

47. ‘Nitrite‐Selective Electrode Based On Cobalt (II) tert‐Butyl‐Salophen Ionophore’.

B. Neel, et al., Electroanalysis, 201426, 473-480.

nfig002

46. ‘Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations’.

B. Neel, et al., J. Chem. Education, 201491, 1655-1660.ed-2013-008149_0009

45. ‘Chronopotentiometric carbonate detection with all-solid-state ionophore-based electrodes’.

Z. Jarolimova, et al., Anal. Chem., 201486, 6307-6314.

ac-2014-004163_0008

44. ‘A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements’.

T. Guinovart, et al., Anal. Chim. Acta, 2014821, 72-80.

1-s2.0-S0003267014002268-fx1

43. ‘A low-cost thin layer coulometric microfluidic device based on an ion-selective membrane for calcium determination’.

D. Dorokhin, et al., Analyst, 2014139, 48-51.

c3an01715j-f1_hi-res

42. ‘Exhaustive thin-layer cyclic voltammetry for absolute multianalyte halide detection’.

M. Cuartero, et al., Anal. Chem., 201486, 11387-11395.
You can find the article here.

41. ‘Chronopotentiometry of pure electrolytes with anion-exchange donnan exclusion membranes’.

G.A. Crespo, et al., Anal. Chem., 2014, 86, 1357-1360.

ac-2013-03902f_0006

40. ‘Chronopotentiometry of pure electrolytes with anion-exchange donnan exclusion membranes’.

G.A. Crespo, et al., J. Electroanal. Chem., 2014, 731, 100-106.

1-s2.0-S1572665714003397-fx1

39. ‘Environmental sensing of aquatic systems at the University of Geneva’.

E. Bakker, et al., CHIMIA International Journal for Chemistry, 2014, 68, 772-777.
You can find the article here.

38. ‘Direct alkalinity detection with ion-selective chronopotentiometry’.

M. Afshar, et al., Anal. Chem., 201486, 6461-6470.

ac-2014-00968c_0011

37. ‘Counter electrode based on an ion-exchanger Donnan exclusion membrane for bioelectroanalysis’.

M. Afshar, et al., Biosens. Bioelectron., 201461, 64-69.

Last version GC

36. ‘Oxazinoindolines as fluorescent H+ turn-on chromoionophores for optical and electrochemical ion sensors’.

X. Xie, et al., Anal. Chem., 201385, 7434-7440.

ac-2013-01367b_0007

35. ‘High‐Selective Tramadol Sensor Based on Modified Molecularly Imprinted Polymer Carbon Paste Electrode with Multiwalled Carbon Nanotubes’.

M. Soleimani, et al., Electroanalysis, 2013, 25, 1159-1168.

nfig004

34. ‘PVC‐Based Ion‐Selective Electrodes with Enhanced Biocompatibility by Surface Modification with “Click” Chemistry’.

M. Pawlak, et al., Electroanalysis, 201325, 1840-1846.

nfig005

33. ‘Photoresponsive ion extraction/release systems: dynamic ion optodes for calcium and sodium based on photochromic spiropyrans’.

G. Mistlberger, et al., Anal. Chem, 201385, 2983-2990.

ac-2013-000283_0012.gif

32. ‘All solid state chronopotentiometric ion-selective electrodes based on ferrocene functionalized PVC’.

Z. Jarolimova, et al., J. Electroanal. Chem., 2013709, 118-125.

Microsoft Word - Graphical Abstract

31. ‘Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes’.

T. Guinovart, et al., Analyst, 2013138, 5208-5215.

c3an00710c-f1.gif

30. ‘Potentiometric sensors with ion-exchange donnan exclusion membranes’.

E. Grygolowicz-Pawlak, et al., Anal. Chem., 201385, 6208-6212.

ac-2013-00470n_0004.gif

29. ‘Detecting heparin in whole blood for point of care anticoagulation control during surgery’.

E. Bakker, et al., CHIMIA International Journal for Chemistry, 2013, 67, 350-350.
You can find the article here.

28. ‘The oxidation state of copper in bimetallic (Pt–Cu, Pd–Cu) catalysts during water denitration’.

J. Sa, et al., Catal. Sci. Technol., 2012, 2, 794-799.

c2cy00461e-f1

27. ‘Paper based ion-selective potentiometric sensors’.

M. Novell, et al., Anal. Chem., 201284, 4695-4702.

ac-2011-02979j_0005

26. ‘Photodynamic ion sensor systems with spiropyran: photoactivated acidity changes in plasticized poly (vinyl chloride)’.

G. Mistlberger, et al., Chem. Comm., 201248, 5662-5664.

c2cc30657c-s1

25. ‘Nanostructured assemblies for ion-sensors: functionalization of multi-wall carbon nanotubes with benzo-18-crown-6 for Pb 2+ determination’.

G. Kerric, et al., J. Mater. Chem., 201222, 16611-16617.

c2jm33153e-f1

24. ‘Direct ion speciation analysis with ion-selective membranes operated in a sequential potentiometric/time resolved chronopotentiometric sensing mode’.

M. Afshar, et al., Anal. Chem., 201284, 8813-8821.

ac-2012-02092m_0002

23. ‘Direct detection of acidity, alkalinity, and pH with membrane electrodes’.

G.A. Crespo, et al., Anal. Chem., 201284, 10165-10169.

ac-2012-02868u_0005.gif

22. ‘Towards Ion‐Selective Membranes with Electrogenerated Chemiluminescence Detection: Visualizing Selective Ru (bpy) 32+ Transport Across a Plasticized Poly (vinyl chloride) Membrane’.

G.A. Crespo, et al., Electroanalysis, 201224, 61-68.

nfig001-2

21. ‘Ionophore-based ion optodes without a reference ion: electrogenerated chemiluminescence for potentiometric sensors’.

G.A. Crespo, et al., Analyst, 2012137, 4988-4994.

c2an35516g-f1

20. ‘Reversible sensing of the anticoagulant heparin with protamine permselective membranes’.

G.A. Crespo, et al., Angew. Chem. Int. Ed., 201251, 12575-12578.

mcontent

19. ‘Potentiometric strip cell based on carbon nanotubes as transducer layer: toward low-cost decentralized measurements’.

F.X. Rius-Ruiz, et al., Anal. Chem., 201183, 8810-8815.

ac-2011-02070r_0006

18. ‘An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for Pb2+ determination’.

E. J. Parra, et al., Chem. Comm. 201147, 2438-2440.

c0cc03639k-s1

17. ‘Electrogenerated chemiluminescence for potentiometric sensors’.

G.A. Crespo, et al., J. Am. Chem. Soc., 2011, 134, 205-207.

1_img_1.png

16. ‘Electrogenerated chemiluminescence triggered by electroseparation of Ru (bpy) 3 2+ across a supported liquid membrane’.

G.A. Crespo, et al., Chem. Comm., 201147, 11644-11646.

c1cc14822b-f1

15. ‘Advancing membrane electrodes and optical ion sensors’.

E. Bakker, et al., CHIMIA International Journal for Chemistry, 2011, 65, 141-149.https://doi.org/10.2533/chimia.2011.141

14. ‘Potentiometric online detection of aromatic hydrocarbons in aqueous phase using carbon nanotube-based sensors’.

A.P. Washe, et al., Anal. Chem., 201082, 8106-8112.https://doi.org/10.1021/ac101146k

13. ‘Ion-selective electrodes using multi-walled carbon nanotubes as ion-to-electron transducers for the detection of perchlorate’.

E.J. Parra, et al., Analyst., 2009134, 1905-1910.

b908224g-f5

12. ‘Solid-contact pH-selective electrode using multi-walled carbon nanotubes’.

G.A. Crespo, et al., Anal. Bioanal. Chem., 2009395, 2371-2376.https://doi.org/10.1007/s00216-009-3127-8

11. ‘Determination of choline and derivatives with a solid-contact ion-selective electrode based on octaamide cavitand and carbon nanotubes’.

J. Ampurdanes, et al., Biosens. Bioelectron., 200925, 344-349.[

1-s2.0-S0956566309003777-gr1

10. ‘Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes’.

G.A. Crespo, et al., Anal. Chem., 200881, 676-681.

master.img-007.jpg

9. ‘Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers’.

G.A. Crespo, et al., Anal. Chem., 200880, 1316-1322.

master.img-000.jpg

8. ‘Kinetic method for the determination of trace amounts of copper (II) in water matrices by its catalytic effect on the oxidation of 1, 5-diphenylcarbazide’.

G.A. Crespo, et al., Anal. Chim. Acta., 2005539, 317-325.https://doi.org/10.1016/j.aca.2005.03.013

Reviews and Book Chapters

7. ‘Recent Advances in Ion-Selective Membrane Electrodes for In Situ Environmental Water Analysis’.

G.A. Crespo,  Electrochim. Acta, 2017245, 1023-1034.https://doi.org/10.1016/j.electacta.2017.05.159

6. ‘Ionophore-based optical sensors’.

G. Mistlberger, G.A. Crespo, E. Bakker. Annu. Rev. of Anal. Chem., 20147, 483-512.https://doi.org/10.1146/annurev-anchem-071213-020307

5. ‘Dynamic electrochemistry with ionophore based ion-selective membranes’.

G.A. Crespo, Rsc Advances, 20133, 25461-25474.https://doi.org/10.1039/C3RA43751E

4. ‘Nanostructured materials in potentiometry’.

A. Duzgun, et al., Anal. Bioanal. Chem., 2011399, 171-181.https://doi.org/10.1007/s00216-010-3974-3

Monographies

3. ‘Solid Contact Ion Selective Electrodes Based on Carbon Nanotubes’.

G.A. Crespo, 2010, Rovira I Virgili University, Tarragona, Spain. 

International Intelectual Properties

2. ‘Reversible detection of ions with permselective membranes’.

G.A. Crespo, et al., 2014, WO2014016791A2/A3.

1. ‘Electrodes Selective for solid contact ions based on carbon nanotubes’.

G.A. Crespo, et al., 2013, WO2008145787A1.

For more publications, please see: Google Scholar

%d bloggers like this: